
Shock Waves manuscript No.
(will be inserted by the editor)

Org-Mode Example Paper
Sean O’Byrne

University of New South Wales, Canberra, ACT, 2600, Australia

December 18, 2021

Abstract. This document illustrates a literate programming workflow using org-mode and org-babel to
incorporate python and other code into a document. I have chosen the Shock Waves style file, but this
could be relatively easily changed to something else. The example document that we will be using for our
study will consider the question of whether adding milk immediately makes a cup of tea hotter or colder
than adding it when it is about to be consumed at a later time.

Key words: tea, org-mode

Introduction

This document is designed to showcase how emacs Org-
mode can be used to interact with code to allow for re-
producible research. Most examples will be executed using
the Python and lisp programming languages. I’ll use the
example of calculating the cooling of a cup of tea. The aim
is to provide a simple template outlining the capabilities
of org-mode for combining text production and computa-
tion. Each of the figures and tables in the document uses
data generated by codes embedded in the document it-
self. References to calculated data within the text are also
converted to numbers when the document is generated.
In this way, the paper is self-documenting. Looking at the
source code that generates the paper provides the reader
with a transparent view of how the data within the paper
was generated.

The Tea Cooling Problem

Let’s say you just made yourself a cup of tea and you de-
cide to add some milk to it before consuming it. However,
being a forgetful academic, you have a tendency to con-
sume it much later than when you make it. The obvious
question is: to keep the tea as warm as possible for a delay
of 10 minutes, is it better to add the milk when you ini-
tially make the tea or when you remember that you need
to drink it at the later time?

You might think that such considerations do not mat-
ter, and that there is no standard way to make a cup of
tea. As a matter of fact, there is a standard way of mak-
ing a cup of tea [BS6008-1980, 1980]. According to this
standard, the best results for infusion of tea occur when
the temperature of the liquor (the mixture of tea extract
and water) is 65 to 80 °C.

There is a fundamental difference between the two
ways of adding the milk to tea:

– if you add the milk immediately, there is a sudden
drop in temperature before the temperature decreases
gradually over time due to cooling;

– if you add the milk after the delay, the sudden drop
occurs after the cooling process has completed.

Fig. 1: Tea-making flowchart

So there are three things that can possibly happen

1. Adding milk immediately leads to a higher tempera-
ture after a given delay;

2. Adding milk after the cooling delay leads to a higher
temperature;

3. There is no difference in the temperature between the
two ways of adding the milk.

Both of the possible cooling sequences are summarised
in Fig. 1. The question that we wish to answer in this pa-
per is which of these outcomes is likely to happen for a
particular combination of volume fraction of tea to milk



2 Sean O’Byrne: Org-Mode Example Paper

(in this case, 0.125), temperature of the tea (80 °C), tem-
perature of the milk (20 °C) and ambient temperature
(20 °C).

The Calculation

The first thing we need is a model of the tea cooling pro-
cess. For the sake of simplicity here we will use Newton’s
Law of cooling [Winterton, 1999]. This equation proceeds
from the logical idea that the rate of change of temper-
ature as a liquid cools is proportional to the difference
between the initial temperature and the temperature of
the surroundings.

dT

dt
= −k (T (t)− Ta) (1)

where k is a rate constant and Ta is the ambient tem-
perature of the surrounding air. The example code uses
temperatures in degrees Celcius. If we integrate this dif-
ferential equation, the solution is of the form

T (t) = Ce−kt + Ta (2)

where k is a dimensional constant indicating the rate at
which the mixture cools and C is a constant of integration
that can be found using the value of T at t=0. If the
temperature of the tea is 80 °C initially, and the ambient
temperature is 20 °C then C = T0 − Ta = 60 °C. As
the constant can be expressed in terms of the initial and
ambient temperatures, we can calculate the temperature
at any time using

T (t) = (T0 − Ta)e
−kt + Ta (3)

For the cooling tea, k has a value of 0.0004476 s-1,
ensuring a rather slow exponential decline in temperature
over time.

To implement this calculation, we define a function
that we call cooling_law, as defined below. This function
can then be called within the document. We have defined
it using the :exports code directive so that the code
finds its way into the final pdf document. Using :exports
none would suppress the output of the source code, which
would be the more usual behaviour for such a code.

import math
def cooling_law(temp_out,temp_start,wait_time):

k=0.0004476
return temp_out \

+ (temp_start - temp_out)\
*math.exp(-1.0*k*wait_time)
return format(cooling_law \

(temp_out,temp_start,wait_time),".2f")

This calculation can be called inline within a para-
graph by using the call command. For example, we can
find the output of our cooling law with inputs of 80 °C
and 10 minutes (600 seconds) by using call and should
get the answer of 65.87 °C. Note that this last number
was produced by a call of the function and was not typed

in directly. If you were to change the inputs to the func-
tion call and recompile the document, the number would
change.

Calculating Cooling Using Tables

We can populate a table using a function by calling that
function within the table. In this case, let’s start at 80 °C
and see what happens at different wait times.

We will populate the temperature row of the table by
using a lisp equivalent of the python function above. This
is because lisp can directly be called to populate rows or
columns of a table. I have also put some fake experimental
data in the table to make it look like someone did an
experiment.

time (s) predicted T (° C) measured T (° C)
0 80.00 81.0

300 72.46 72.5
600 65.87 65.0
900 60.11 60.5

1200 55.07 55.0

My preferred tool for plotting is gnuplot, because I
have used it for a long time, and it’s text-based. Org-mode
allows us to plot the data we need to plot using org-babel
gnuplot mode. There is also a built-in table plotting set
of commands for org-tables, but the options for this are
limited so I always use a gnuplot source block instead. The
source block effectively works as a gnuplot script.

We are not limited to gnuplot, however. We can also
take the data that we have calculated in the table and
plot it in python using its matplotlib library. We could,
of course, achieve the same thing in octave, matlab, R, C,
Julia or whatever programming language that you prefer
that is supported by org-babel. Note that in this case we
have plotted points with straight-line segments between
them, rather than plotting a separate fit curve as was done
with the gnuplot graph. Provided (unlike me) you know
enough python, you could do a curve of best fit or plot a
function if you wanted to, as the source block effectively
acts like any python script.

We can compare the cooling curve plots generated by
gnuplot and python by plotting the two together, as shown
in Fig. 2. The differences between the two plots indicate
why it’s not a great idea to mix plotting packages used
to generate data for a paper, but it serves the purpose of
illustrating the variety of ways such plots can be generated
using org-mode. Note that I plotted the experimental data
with a curve fit in gnuplot, but just plotted the points for
the curve fit connected by points in python, because that’s
about all I can manage in python, but it gives the idea.
I plotted the two graphs in raw latex using the subfig
package, because there does not seem to be an easy built-
in org-mode way of doing this and it illustrates how easily
raw LATEXcan be integrated into an org-mode file.



Sean O’Byrne: Org-Mode Example Paper 3

(a) Gnuplot

(b) Python

Fig. 2: Cooling curves plotted in different environments

Mixing

Now that we have a formula for the cooling of a liquid,
we now need to determine the effect on temperature of
mixing the tea and the milk. The temperature should be
proportional to the difference in the temperatures (let’s
assume the milk is at room temperature) weighted to the
relative liquid volumes:

Tmix =
TteaVtea − TmilkVmilk

Vtea + Vmilk
(4)

Again, I’m going to use a lisp function that can be
used to populate the table

(defun tmix (temp_tea temp_milk vfrac)

"Determines the final temperature of a
mixture of milk and tea based upon the
fractional volumes of the two mixture
components. vfrac is the fraction of the
mixture that is milk."

(- (* temp_tea (- 1 vfrac))
(* temp_milk vfrac)))

So, if we use this function assuming a volume fraction
of 0.125 and a milk temperature of 20 °C, we can populate
another table and make a plot comparing the cooling rate
for the milk added after 10 minutes to the milk added
immediately. Adding the milk immediately drops the first
temperature from 80 °C to 67.5 °C.

t (s) Milk later T (° C) Milk first T (° C)
0 80.00 80.00
5 79.87 67.39
60 78.41 66.13

120 76.86 64.91
180 75.36 63.72
240 73.89 62.56
300 72.46 61.44
360 71.07 60.34
420 69.72 59.27
480 68.40 58.23
540 67.12 57.21
600 65.87 56.23
605 55.14 56.15

The comparison between these two cases can be seen
in Fig. 3. The green curve corresponds to allowing the tea
to cool for 10 minutes and then adding milk, while the
blue curve shows the effect of adding milk immediately,
reducing the temperature to 67.5 °C and then allowing it
to cool for 10 minutes.

It is clear from Fig. 3 that the slope of the green cooling
curve is higher than that of the blue curve. This finding
is consistent with Newton’s law, where the rate of change
of temperature is proportional to the difference between
the temperature of the liquid and the temperature of the
surroundings, as expressed in Eq. 1.

Fig. 3: Cooling comparison



4 Sean O’Byrne: Org-Mode Example Paper

Conclusions and Future Work

In this study we saw that, by a very small margin, if you
leave a cup of tea for 10 minutes before adding milk, it
ends up slightly colder than if you add the milk imme-
diately, at least for our nominal conditions regarding the
cooling rate of the liquid and the volume fraction of milk.
Hopefully I have also shown that emacs org-mode, when
combined with other free and open-source software can
provide a completely traceable piece of research documen-
tation for which all of the calculations are in the open.

This paper only scratches the surface of the capabil-
ity of emacs as a system for performing robust and re-
producible research. It has many capabilities in terms of
project management and organisation that can also facil-
itate efficient completion and documentation of research
projects.

In terms of future work, you might like to change some
of the parameters in this paper and generate different
graphs for different cooling rates, cooling times and ra-
tios of milk to tea. More importantly, I hope that the
paper will encourage you to try writing your next paper
using this environment. Although there is quite a steep
learning curve regarding how to make things work in the
emacs/org-mode software ecosystem, the ability to har-
ness a range of programming languages and other appli-
cations and integrate them consistently into a publication
make it the most flexible platform for reproducible re-
search that I am aware of.

References

BS6008-1980 (1980). Method for preparation of a liquor of
tea for use in sensory tests. Standard, British Standard
Institution, 2 Park St., London, W1A 2BS.

Winterton, R. (1999). Newton’s law of cooling. Contemporary
Physics, 40(3):205–212.


